
Ingila Ejaz for This is Angular
Posted on Sep 19 • Updated on Sep 20

5

Change Detection from Angular 2 (zone.js) to
Angular 18 (Zoneless)
#angular #webdev #frontend #javascript

Change detection is a fundamental aspect of Angular, responsible for identifying and
updating parts of the DOM that have changed in response to data modifications or user
interactions. This process ensures that the UI remains consistent with the underlying
data, enhancing user experience and application performance.

The Role of Zone.js
Historically, Angular has relied on Zone.js for its change detection mechanism. Zone.js is
a JavaScript library that intercepts asynchronous operations, allowing Angular to
monitor changes and trigger updates accordingly. However, the inclusion of Zone.js can
add overhead to the application, particularly in scenarios with frequent asynchronous
activities.

Change Detection Strategies

https://media.dev.to/dynamic/image/width=1000,height=420,fit=cover,gravity=auto,format=auto/https%3A%2F%2Fdev-to-uploads.s3.amazonaws.com%2Fuploads%2Farticles%2Ftu94qoaab3f0481ugyhu.jpg
https://dev.to/ingila185
https://dev.to/this-is-angular
https://dev.to/t/angular
https://dev.to/t/webdev
https://dev.to/t/frontend
https://dev.to/t/javascript
https://dev.to/this-is-angular
https://dev.to/this-is-angular
https://dev.to/ingila185


Angular provides two primary change detection strategies:

Default: Change detection is triggered after every lifecycle hook, such as ngOnInit  or
ngAfterViewInit . This strategy is straightforward but can lead to unnecessary DOM
updates, especially in large applications.

This strategy is easier to implement, as Angular handles most of the change detection
logic automatically.
The biggest challenge with this change detection strategy was that it led to unnecessary
DOM updates which gets critical for large applications.

OnPush: Change detection is triggered only when input properties or asynchronous
observables change. This strategy is more performant for complex components with
frequent data updates but requires more manual management.

While onPush  change detection strategy minimized unnecessary DOM manipulations,
the biggest challenge with onPush  change strategy was that the developers had to do
more manual management and trigger changes manually. They had to handle change

@Component({
  selector: 'app-my-component',
  template: `
    <p>{{ message }}</p>
  `
})
export class MyComponent {
  message = 'Hello, world!';
}

@Component({
  selector: 'app-my-component',
  template: `
    <p>{{ message }}</p>
  `,
  changeDetection: ChangeDetectionStrategy.OnPush
})
export class MyComponent {
  message = 'Hello, world!';
} 



detection explicitly with changeDetectorRef.detectChanges()  in certain scenarios, such as
when data changes indirectly or when using mutable objects.

Angular 18 and Hybrid Change Detection: A Zone-less
Approach
To address the challenges associated with Zone.js , Angular 18 introduced an
experimental feature known as Hybrid Change Detection. This approach aims to
eliminate Zone.js  entirely, using a new change detection mechanism to detect changes
and manipulate the DOM.

Enabling Hybrid Change Detection:
To enable Hybrid Change Detection, you can use the following code:

This will trigger change detection in the following scenarios:

A signal is updated.
changeDetectorRef.markForCheck() is called.
An observable subscribed with the AsyncPipe receives a new value.
A component gets attached or detached.
An input is set.

Once Hybrid Change Detection is enabled, you can safely remove Zone.js from your
application's polyfills.

Benefits of Hybrid Change Detection
Improved performance: Eliminating Zone.js reduces overhead, leading to better
performance, especially in applications with numerous asynchronous operations.

bootstrapApplication(RootCmp,
{ providers: [provideExperimentalZonelessChangeDetection()] 
}
);

 "polyfills": [
              "zone.js" //remove this line
            ],



Enhanced developer experience: The removal of manual change detection
simplifies development and reduces the likelihood of errors.
Smaller application size: Zone.js typically adds around 13KB to the application size.
Removing it can lead to a smaller bundle.

Tangible Observability
Logs. Traces. All of your events are belong to us.

Code of Conduct  Report abuse

Axiom PROMOTED

See your logs with Axiom

Top comments (0)

•

https://axiom.co/?utm_campaign=3q24_brand_aware&utm_source=devto&utm_medium=paidother&utm_content=v5&bb=169423
https://axiom.co/?utm_campaign=3q24_brand_aware&utm_source=devto&utm_medium=paidother&utm_content=v5&bb=169423
https://axiom.co/?utm_campaign=3q24_brand_aware&utm_source=devto&utm_medium=paidother&utm_content=v5&bb=169423
https://dev.to/code-of-conduct
https://dev.to/report-abuse
https://dev.to/axiomhq
https://axiom.co/?utm_campaign=3q24_brand_aware&utm_source=devto&utm_medium=paidother&utm_content=v5&bb=169423

